
CUDA Performance

Patrick Cozzi

University of Pennsylvania

CIS 565 - Fall 2016

Acknowledgements

 Some slides from Varun Sampath

2

http://vsampath.com/

Agenda

 Parallel Reduction Revisited

 Warp Partitioning

 Memory Coalescing

 Bank Conflicts

 Dynamic Partitioning of SM Resources

 Data Prefetching

 Instruction Mix

 Loop Unrolling

 Thread Granularity
3

Efficient data-

parallel algorithms

Optimizations based

on GPU Architecture

Maximum

Performance

+

=

4

Parallel Reduction

0 1 52 3 4 6 7

 Recall Parallel Reduction (sum)

5

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

7

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

8

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x;

stride *= 2)

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

9

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x;

stride *= 2)

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Computing the sum for the

elements in shared memory

10

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x;

stride *= 2)

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Stride:

1, 2, 4, …

11

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x;

stride *= 2)

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Why?

12

__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x;

stride *= 2)

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Compute sum in same shared memory

• As stride increases, what do more threads do?

13

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread

1

14

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread

1

 1st pass: threads 1, 3, 5, and 7 don’t do anything

 Really only need n/2 threads for n elements
15

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread

1

 2nd pass: threads 2 and 6 also don’t do anything

16

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread

1

 3rd pass: thread 4 also doesn’t do anything

17

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Parallel Reduction

0 1 52 3 4 6 7

1 5 9 13

6 22

28

Thread

0

Thread

1

 In general, number of required threads cuts in half

after each pass
18

Parallel Reduction

 What if we tweaked the implementation?

19

Parallel Reduction

0 1 52 3 4 6 7

20

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

21

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

22

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

23

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

stride: …, 4, 2, 1

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx.x;

for(unsigned int stride = blockDim.x / 2;

stride > 0;

stride /= 2)

{

__syncthreads();

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

}
24

Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx.x;

for(unsigned int stride = blockDim.x / 2;

stride > 0;

stride /= 2)

{

__syncthreads();

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

}
25

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Thread

0

Thread

1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

26

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Thread

0

Thread

1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

 1st pass: threads 4, 5, 6, and 7 don’t do anything

 Really only need n/2 threads for n elements
27

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Thread

0

Thread

1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

 2nd pass: threads 2 and 3 also don’t do anything

28

Thread

7

Thread

6

Thread

5

Thread

4

Thread

3

Thread

2

Thread

0

Thread

1

Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10

12 16

28

 3rd pass: thread 1 also doesn’t do anything

29

Parallel Reduction

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

 What is the difference?

stride = 1, 2, 4, … stride = 4, 2, 1, …

30

Parallel Reduction

 What is the difference?

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

31

Warp Partitioning

 Warp Partitioning: how threads from a

block are divided into warps

 Knowledge of warp partitioning can be

used to:

Minimize divergent branches

Retire warps early

32

Warp Partitioning

 Partition based on consecutive increasing
threadIdx

33

Warp Partitioning

 1D Block

threadIdx.x between 0 and 512 (G80/GT200)

Warp n

 Starts with thread 32n

 Ends with thread 32(n + 1) – 1

Last warp is padded if block size is not a multiple

of 32

0…31 32...63 64...95 96...127

Warp 0 Warp 1 Warp 2 Warp 3

…
34

Warp Partitioning

 2D Block

 Increasing threadIdx means

 Increasing threadIdx.x

 Starting with row threadIdx.y == 0

35

Warp Partitioning

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

 2D Block

36

Warp Partitioning

 3D Block

Start with threadIdx.z == 0

Partition as a 2D block

 Increase threadIdx.z and repeat

37

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

Warp Partitioning

Divergent branches are within a warp!

38

Warp Partitioning

 For warpSize == 32, does any warp

have a divergent branch with this code:

if (threadIdx.x > 15)

{

// ...

}

39

Warp Partitioning

 For any warpSize > 1, does any warp

have a divergent branch with this code:

if (threadIdx.x > warpSize - 1)

{

// ...

}

40

Warp Partitioning

 Given knowledge of warp partitioning,

which parallel reduction is better?

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

41

Warp Partitioning

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

 Pretend warpSize == 2

42

Warp Partitioning

 1st Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

4

divergent

branches

0

divergent

branches

43

Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

2

divergent

branches

0

divergent

branches

44

Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

1

divergent

branch

1

divergent

branch

45

Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

1

divergent

branch

1

divergent

branch

Still diverge when number of
elements left is <= warpSize 46

Warp Partitioning

 Good partitioning also allows warps to be

retired early.

Better hardware utilization

if (t < stride)

partialSum[t] +=

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] +=

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

47

Warp Partitioning

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

 Parallel Reduction

48

Warp Partitioning

 1st Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

0

warps

retired

2

warps

retired

49

Warp Partitioning

 1st Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

50

Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

1

warp

retired

2

warps

retired

51

Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …

Warp

0

Warp

1

Warp

2

Warp

3

Warp

0

Warp

1

Warp

2

Warp

3

52

Memory Coalescing

 Given a matrix stored row-major in global

memory, what is a thread’s desirable

access pattern?

Image from: http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

53

Memory Coalescing

 Given a matrix stored row-major in global

memory, what is a thread’s desirable

access pattern?

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

Md Nd

W
ID

T
H

WIDTH

Thread 0

Thread 1

Thread

0

Thread

1

a) column after column? b) row after row?

54

Memory Coalescing

 Given a matrix stored row-major in global

memory, what is a thread’s desirable

access pattern?

a) column after column

 Individual threads read increasing, consecutive

memory address

b) row after row

 Adjacent threads read increasing, consecutive

memory addresses

55

Memory Coalescing

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

a) column after column

56

Memory Coalescing

Image from: http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

b) row after row

57

Memory Coalescing

 Global memory bandwidth (DRAM)

G80 – 86.4 GB/s

GT200 – 150 GB/s

 Achieve peak bandwidth by requesting

large, consecutive locations from DRAM

Accessing random location results in much

lower bandwidth

58

Memory Coalescing

 Memory coalescing – rearrange access

patterns to improve performance

 Useful today but will be less useful with

large on-chip caches

59

Memory Coalescing

 The GPU coalesces consecutive reads in

a half-warp into a single read

 Strategy: read global memory in a

coalesce-able fashion into shared memory

Then access shared memory randomly at

maximum bandwidth

 Ignoring bank conflicts…

See Appendix G in the NVIDIA CUDA C Programming Guide for coalescing alignment requirements
60

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Shared Memory

Sometimes called a parallel data cache

 Multiple threads can access shared

memory at the same time

Memory is divided into banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

61

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Banks

Each bank can service one address per

two cycles

Per-bank bandwidth: 32-bits per two

(shader clock) cycles

Successive 32-bit words are assigned

to successive banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

62

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Bank Conflict: Two simultaneous
accesses to the same bank, but not the
same address

Serialized

 G80-GT200: 16 banks, with 8 SPs
concurrently executing

 Fermi: 32 banks, with 16 SPs
concurrently executing

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

63

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Bank Conflicts?

 Linear addressing

stride == 1

 Bank Conflicts?

 Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

64

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Bank Conflicts?

 Linear addressing

stride == 2

 Bank Conflicts?

 Linear addressing

stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

65

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Fast Path 1 (G80)

All threads in a half-warp

access different banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

66

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Fast Path 2 (G80)

All threads in a half-warp

access the same address

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Same

address

67

Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

 Slow Path (G80)
Multiple threads in a half-

warp access the same bank

Access is serialized

What is the cost?

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

68

Bank Conflicts

__shared__ float shared[256];

// ...

float f = shared[index + s * threadIdx.x];

 For what values of s is this conflict free?

69

Bank Conflicts

__shared__ float shared[256];

// ...

float f = shared[index + s * threadIdx.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=1

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html
70

Bank Conflicts

 Without using a profiler, how can we tell what kind of
speedup we can expect by removing bank conflicts?

 What happens if more than one thread in a warp writes
to the same shared memory address (non-atomic
instruction)?

71

SM Resource Partitioning

 Recall a SM dynamically partitions

resources:

Registers

Thread block slots

Thread slots

Shared memory

SM

72

SM Resource Partitioning

 Recall a SM dynamically partitions

resources:

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits

73

SM Resource Partitioning

 We can have

8 blocks of 96 threads

4 blocks of 192 threads

But not 8 blocks of 192 threads

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits

74

SM Resource Partitioning

 We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each

512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits

75

SM Resource Partitioning

 We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each

512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits
 More registers

decreases thread-

level parallelism

 Can it ever

increase

performance?
76

SM Resource Partitioning

 Performance Cliff: Increasing resource

usage leads to a dramatic reduction in

parallelism

For example, increasing the number of

registers, unless doing so hides latency of

global memory access

77

Data Prefetching

 Independent instructions between a global

memory read and its use can hide memory

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

78

Data Prefetching

 Independent instructions between a global

memory read and its use can hide memory

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Read global memory

79

Data Prefetching

 Independent instructions between a global

memory read and its use can hide memory

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Execute instructions

that are not dependent

on memory read
80

Data Prefetching

 Independent instructions between a global

memory read and its use can hide memory

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f; Use global memory after

the above line from

enough warps hide the

memory latency

81

Data Prefetching

 Prefetching data from global memory can

effectively increase the number of

independent instructions between global

memory read and use

82

Data Prefetching

 Recall tiled matrix multiply:

for (/* ... */)

{

// Load current tile into shared memory

__syncthreads();

// Accumulate dot product

__syncthreads();

}

83

Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}
84

Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}
85

Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}

Prefetch for next

iteration of the loop

86

Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}

These instructions

executed by enough

threads will hide the

memory latency of the

prefetch
87

• Special Function

Units (SFUs)

• Use to compute
__sinf(), __expf()

• Only 4, each

can execute 1

instruction per

clock

Image: NVIDIA Fermi Whitepaper

Instruction Mix

88

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Loop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

 Instructions per iteration

One floating-point multiply

One floating-point add

What else?

89

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

90

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

Branch

91

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

Branch

Address arithmetic

92

Loop Unrolling

 Instruction Mix

2 floating-point arithmetic instructions

1 loop branch instruction

2 address arithmetic instructions

1 loop counter increment instruction

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

93

• Only 1/3 are

floating-point

calculations

• But I want my

full theoretical 1

TFLOP (Fermi)

• Consider loop

unrolling

Image: NVIDIA Fermi Whitepaper

Loop Unrolling

94

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

Loop Unrolling

Pvalue +=

Ms[ty][0] * Ns[0][tx] +

Ms[ty][1] * Ns[1][tx] +

...

Ms[ty][15] * Ns[15][tx]; // BLOCK_SIZE = 16

• No more loop

• No loop count update

• No branch

• Constant indices – no address arithmetic

instructions
95

Loop Unrolling

 Automatically:
#pragma unroll BLOCK_SIZE

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

 Disadvantages to unrolling?

96

Thread Granularity

 How much work should one thread do?

Parallel Reduction

 Reduce two elements?

Matrix multiply

 Compute one element of Pd?

Thread Granularity

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

 Matrix Multiple

Thread Granularity

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

 Matrix Multiple

Both elements of Pd

require the same

row of Md

Thread Granularity

 Matrix Multiple

Compute both Pd elements in the same thread

 Reduces global memory access by ¼

 Increases number of independent instructions

 What is the benefit?

 New kernel uses more registers and shared memory

 What does that imply?

