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Parallel Reduction
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 Recall Parallel Reduction (sum)
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Parallel Reduction
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;

stride *= 2) 

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;

stride *= 2) 

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Computing the sum for the 

elements in shared memory
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;

stride *= 2) 

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Stride:

1, 2, 4, …
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;

stride *= 2) 

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

Why?
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__shared__ float partialSum[];

// ... load into shared memory

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;

stride *= 2) 

{

__syncthreads();

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

}
Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

• Compute sum in same shared memory

• As stride increases, what do more threads do?
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Thread
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 1st pass: threads 1, 3, 5, and 7 don’t do anything

 Really only need n/2 threads for n elements
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 2nd pass: threads 2 and 6 also don’t do anything
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 3rd pass: thread 4 also doesn’t do anything
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 In general, number of required threads cuts in half 

after each pass
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Parallel Reduction

 What if we tweaked the implementation?
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Parallel Reduction

0 1 52 3 4 6 7
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Parallel Reduction

0 1 52 3 4 6 7

4 6 8 10
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Parallel Reduction
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Parallel Reduction
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Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

stride: …, 4, 2, 1

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx.x;

for(unsigned int stride = blockDim.x / 2; 

stride > 0;

stride /= 2) 

{

__syncthreads();

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

}
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Code from http://courses.engr.illinois.edu/ece498/al/Syllabus.html

__shared__ float partialSum[]

// ... load into shared memory

unsigned int t = threadIdx.x;

for(unsigned int stride = blockDim.x / 2; 

stride > 0;

stride /= 2) 

{

__syncthreads();

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

}
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 1st pass: threads 4, 5, 6, and 7 don’t do anything

 Really only need n/2 threads for n elements
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 2nd pass: threads 2 and 3 also don’t do anything
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 3rd pass: thread 1 also doesn’t do anything
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Parallel Reduction

0        1        2        3       4        5        6        7 0        1        2        3       4        5        6        7

 What is the difference?

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Parallel Reduction

 What is the difference?

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Warp Partitioning

 Warp Partitioning:  how threads from a 

block are divided into warps

 Knowledge of warp partitioning can be 

used to:

Minimize divergent branches

Retire warps early
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Warp Partitioning

 Partition based on consecutive increasing
threadIdx
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Warp Partitioning

 1D Block

threadIdx.x between 0 and 512 (G80/GT200)

Warp n

 Starts with thread 32n

 Ends with thread 32(n + 1) – 1

Last warp is padded if block size is not a multiple 

of 32

0…31 32...63 64...95 96...127

Warp 0 Warp 1 Warp 2 Warp 3

…
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Warp Partitioning

 2D Block

 Increasing threadIdx means

 Increasing threadIdx.x

 Starting with row threadIdx.y == 0
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Warp Partitioning

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf

 2D Block
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Warp Partitioning

 3D Block

Start with threadIdx.z == 0

Partition as a 2D block

 Increase threadIdx.z and repeat
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Image from:  http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf 

Warp Partitioning

Divergent branches are within a warp!
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Warp Partitioning

 For warpSize == 32, does any warp 

have a divergent branch with this code:

if (threadIdx.x > 15)

{

// ...

}
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Warp Partitioning

 For any warpSize > 1, does any warp 

have a divergent branch with this code:

if (threadIdx.x > warpSize - 1)

{

// ...

}
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Warp Partitioning

 Given knowledge of warp partitioning, 

which parallel reduction is better?

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Warp Partitioning
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 Pretend warpSize == 2
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Warp Partitioning

 1st Pass
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Warp Partitioning

 2nd Pass
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Warp Partitioning

 2nd Pass
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Warp Partitioning

 2nd Pass

stride = 1, 2, 4, … stride = 4, 2, 1, …
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Still diverge when number of 
elements left is <= warpSize 46



Warp Partitioning

 Good partitioning also allows warps to be 

retired early.

Better hardware utilization

if (t < stride)

partialSum[t] += 

partialSum[t + stride];

if (t % (2 * stride) == 0)

partialSum[t] += 

partialSum[t + stride];

stride = 1, 2, 4, … stride = 4, 2, 1, …

47



Warp Partitioning
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 Parallel Reduction
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Warp Partitioning

 1st Pass
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Warp Partitioning
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Warp Partitioning

 2nd Pass
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Warp Partitioning

 2nd Pass
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Memory Coalescing

 Given a matrix stored row-major in global 

memory, what is a thread’s desirable 

access pattern?

Image from:  http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf 
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Memory Coalescing

 Given a matrix stored row-major in global 

memory, what is a thread’s desirable 

access pattern?

Image from:  http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

Md Nd

W
ID

T
H

WIDTH

Thread 0

Thread 1

Thread

0

Thread

1

a) column after column? b) row after row?
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Memory Coalescing

 Given a matrix stored row-major in global 

memory, what is a thread’s desirable 

access pattern?

a) column after column

 Individual threads read increasing, consecutive 

memory address

b) row after row

 Adjacent threads read increasing, consecutive 

memory addresses

55



Memory Coalescing

Image from:  http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

a) column after column
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Memory Coalescing

Image from:  http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

b) row after row
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Memory Coalescing

 Global memory bandwidth (DRAM)

G80 – 86.4 GB/s

GT200 – 150 GB/s

 Achieve peak bandwidth by requesting 

large, consecutive locations from DRAM

Accessing random location results in much 

lower bandwidth
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Memory Coalescing

 Memory coalescing – rearrange access 

patterns to improve performance

 Useful today but will be less useful with 

large on-chip caches
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Memory Coalescing

 The GPU coalesces consecutive reads in 

a half-warp into a single read

 Strategy:  read global memory in a 

coalesce-able fashion into shared memory

Then access shared memory randomly at 

maximum bandwidth

 Ignoring bank conflicts…

See Appendix G in the NVIDIA CUDA C Programming Guide for coalescing alignment requirements
60



Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Shared Memory

Sometimes called a parallel data cache

 Multiple threads can access shared 

memory at the same time

Memory is divided into banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Banks

Each bank can service one address per 

two cycles

Per-bank bandwidth: 32-bits per two 

(shader clock) cycles

Successive 32-bit words are assigned 

to successive banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Bank Conflict:  Two simultaneous 
accesses to the same bank, but not the 
same address

Serialized

 G80-GT200: 16 banks, with 8 SPs 
concurrently executing

 Fermi: 32 banks, with 16 SPs 
concurrently executing 

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Bank Conflicts?

 Linear addressing 

stride == 1

 Bank Conflicts?

 Random 1:1 Permutation
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Bank Conflicts?

 Linear addressing 

stride == 2

 Bank Conflicts?

 Linear addressing 

stride == 8

Thread 11
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Thread 8
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Fast Path 1 (G80)

All threads in a half-warp 

access different banks

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Fast Path 2 (G80)

All threads in a half-warp 

access the same address

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Same

address
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Bank Conflicts

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 

 Slow Path (G80)
Multiple threads in a half-

warp access the same bank

Access is serialized

What is the cost?

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0
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Bank Conflicts

__shared__ float shared[256];

// ...

float f = shared[index + s * threadIdx.x];

 For what values of s is this conflict free?
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Bank Conflicts

__shared__ float shared[256];

// ...

float f = shared[index + s * threadIdx.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=1

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

s=3

Image from http://courses.engr.illinois.edu/ece498/al/Syllabus.html 
70



Bank Conflicts

 Without using a profiler, how can we tell what kind of 
speedup we can expect by removing bank conflicts?

 What happens if more than one thread in a warp writes 
to the same shared memory address (non-atomic 
instruction)?
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SM Resource Partitioning

 Recall a SM dynamically partitions 

resources:

Registers

Thread block slots

Thread slots

Shared memory

SM
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SM Resource Partitioning

 Recall a SM dynamically partitions 

resources:

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   
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SM Resource Partitioning

 We can have

8 blocks of 96 threads

4 blocks of 192 threads

But not 8 blocks of 192 threads

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   
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SM Resource Partitioning

 We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each

512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   
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SM Resource Partitioning

 We can have (assuming 256 thread blocks)

768 threads (3 blocks) using 10 registers each

512 threads (2 blocks) using 11 registers each

Registers

Thread block slots

Thread slots

Shared memory

SM

8

768

8K registers / 32K memory

16K

G80 Limits   
 More registers 

decreases thread-

level parallelism

 Can it ever 

increase 

performance?
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SM Resource Partitioning

 Performance Cliff:  Increasing resource 

usage leads to a dramatic reduction in 

parallelism

For example, increasing the number of 

registers, unless doing so hides latency of 

global memory access
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Data Prefetching

 Independent instructions between a global 

memory read and its use can hide memory 

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;
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Data Prefetching

 Independent instructions between a global 

memory read and its use can hide memory 

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Read global memory
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Data Prefetching

 Independent instructions between a global 

memory read and its use can hide memory 

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f;

Execute instructions 

that are not dependent 

on memory read
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Data Prefetching

 Independent instructions between a global 

memory read and its use can hide memory 

latency

float m = Md[i];

float f = a * b + c * d;

float f2 = m * f; Use global memory after 

the above line from 

enough warps hide the 

memory latency
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Data Prefetching

 Prefetching data from global memory can 

effectively increase the number of 

independent instructions between global 

memory read and use
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Data Prefetching

 Recall tiled matrix multiply:

for (/* ... */)

{

// Load current tile into shared memory

__syncthreads();

// Accumulate dot product

__syncthreads();

}
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Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}
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Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}
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Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}

Prefetch for next 

iteration of the loop
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Data Prefetching

 Tiled matrix multiply with prefetch:

// Load first tile into registers

for (/* ... */)

{

// Deposit registers into shared memory

__syncthreads();

// Load next tile into registers

// Accumulate dot product

__syncthreads();

}

These instructions 

executed by enough 

threads will hide the 

memory latency of the 

prefetch
87



• Special Function 

Units (SFUs)

• Use to compute 
__sinf(), __expf()

• Only 4, each 

can execute 1 

instruction per 

clock

Image: NVIDIA Fermi Whitepaper

Instruction Mix

88

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf


Loop Unrolling

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

 Instructions per iteration

One floating-point multiply

One floating-point add

What else?
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for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

90



for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

Branch

91



for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

Loop Unrolling

 Other instructions per iteration

Update loop counter

Branch

Address arithmetic

92



Loop Unrolling

 Instruction Mix

2 floating-point arithmetic instructions

1 loop branch instruction

2 address arithmetic instructions

1 loop counter increment instruction

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}
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• Only 1/3 are 

floating-point 

calculations

• But I want my 

full theoretical 1 

TFLOP (Fermi)

• Consider  loop 

unrolling

Image: NVIDIA Fermi Whitepaper

Loop Unrolling

94

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf


Loop Unrolling

Pvalue +=

Ms[ty][0] * Ns[0][tx] +

Ms[ty][1] * Ns[1][tx] +

...

Ms[ty][15] * Ns[15][tx]; // BLOCK_SIZE = 16

• No more loop

• No loop count update

• No branch

• Constant indices – no address arithmetic 

instructions
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Loop Unrolling

 Automatically:
#pragma unroll BLOCK_SIZE

for (int k = 0; k < BLOCK_SIZE; ++k)

{

Pvalue += Ms[ty][k] * Ns[k][tx];

}

 Disadvantages to unrolling?
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Thread Granularity

 How much work should one thread do?

Parallel Reduction

 Reduce two elements?

Matrix multiply

 Compute one element of Pd?



Thread Granularity

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

 Matrix Multiple



Thread Granularity

Image from http://courses.engr.illinois.edu/ece498/al/textbook/Chapter5-CudaPerformance.pdf 

 Matrix Multiple

Both elements of Pd

require the same 

row of Md



Thread Granularity

 Matrix Multiple

Compute both Pd elements in the same thread

 Reduces global memory access by ¼

 Increases number of independent instructions

 What is the benefit?

 New kernel uses more registers and shared memory

 What does that imply?


