
NVIDIA’s Pascal Architecture
Gabriel Naghi

CIS565 Project 4

Outline

Outline Nvidia GPGPUs: G80 through Pascal

“The 5 Technological Breakthroughs of Pascal”

- Modules and Layout

- Floating Point

- 16 nm FinFET

- NVIDIA NVLink

- CoWoS with HBM2

- Unified Memory and Compute Preemption

- NUMA

GTX 1080 Summary

History of
NVIDIA

Architectures

Past NVIDIA
Architectures

- Tesla

- 576 GFLOPS

- 681M transistors (90 nm)

- 768 MB Memory

- Fermi

- 1.5 TFLOPS

- 3B transistors (40 nm)

- 1.5 GB Memory

- Kepler

- 3.1 TFLOPS

- 3.5B transistors (28 nm)

- 2 GB Memory

- Maxwell

- 4.6 TFLOPS

- 5.2B transistors (28 nm)

- 4 GB Memory

New Architectures
Pascal

- 15 TFLOPS

- 15B transistors (16 nm)

- 16 GB Memory

Volta

- ??? (Pascal stole all its roadmapped features)

- Focus on DX12

- Better Async execution

- Think: How is AMD still winning?

Source: NVIDIA

Pascal
Architecture

Quick note on Title
- NVIDIA touts these features as “Pascal Architecture”, but really will only be

included in Tesla P100.

- Uses GP100 GPU die (Focus of this presentation)

- P100 meant for compute acceleration (HPC), not gaming

- CRUNCH DATA

- First Pascal GPUs (GTX 10xx) have very few of these features

- Based on GP104 die

- 16 nm FinFET process!

- GDDR5X vs HBM2

- Different module organization (next slide)

- Includes some additional graphics modules

- Huge focus on VR

- Simultaneous multi projection, lossless compression engine

- MOVE FRAMES

Source: hardware.fr

SPECS
(Not Architecture)

Source: NVIDIA

Source: NVIDIA

Modules and Layout

Die Hierarchy
GPU

Graphics Processing

Cluster (GPC)

Texture Processing

Cluster (TPC)

Streaming

Multiprocessor (SM)

Execution Cores

(Floating Point, Special

Function) Source: NVIDIA

Pascal Streaming Multiprocessor (SM)
- Each SM partitioned into 2 execution

blocks. Each has:

- 32 32-bit FP units (64 total)

- 16 64- bit FP units (32 total)

- Instruction Buffer

- Warp scheduler (2 instructions per clock)

- Two dispatch units

- 128 KB Register File, or ~32,000 4 byte words

 2 SMs per TPC

5 TPCs per GPC

6 GPCs per GPU

Source: NVIDIA

Strategic Optimizations
- More than double SM count over Maxwell

- More threads, warps, and blocks in flight

- Higher ratio of shared memory, registers, and warps per SM

- More warps for scheduler to choose from

- Lower ratio of FP32 units to FP64 units

- Better workload balancing

- Better performance for FP64 workloads

- Simpler datapath

- Power, area efficiency

- At the expense of bandwidth efficiency, probably

- “Aggregate bandwidth effectively more than doubled” - despite >> 2x SMs

- optimized scheduling and overlapped load/store instructions

- Better floating point utilization

32-bit Floating Point
- IEEE 754 Single Precision Binary Floating Point Format

- A.k.a. “Float” in c/c++

- As opposed to Double-precision (FP64) or half-precision (FP16)

- 32 bit wide float B

- B[31] (MSB) - 1 bit sign

- B[30 : 23] - 8 bit exponent

- B[22 : 0] - 23 bit fraction

Value = (-1)

sign

 * 1.fraction * 2

exponent - 127

Source: wikipedia

Floating Point Arithmetic

source : http://www.slideshare.net/azharsyed898/floating-point-alu-using-vhdl

Floating Point Arithmetic

source : http://www.slideshare.net/azharsyed898/floating-point-alu-using-vhdl

Floating Point Arithmetic

source : http://www.slideshare.net/azharsyed898/floating-point-alu-using-vhdl

Algorithm for Floating Point Division
1. Sign bit = S1 xor S2

2. Fraction = Fraction1 / Fraction2

3. Exponent = Exponent1 - Exponent2 + bias (in FP32, -127)

4. Normalize if required by left-shifting Fraction and decrementing Exponent

Floating Point Arithmetic

source : http://www.slideshare.net/azharsyed898/floating-point-alu-using-vhdl

Floating Point Hardware
- Involves complicated and computationally expensive operations

- Especially divides!

- Often Pipelined to allow higher throughput

- Latency same (or higher), but trade off computation per fast cycle rather

- Computation theoretically linear in operand length

- In practice, super-linear

- Caching

- Fewer limitations imposed by shared memory, registers and fast memory

- Don’t hit the bandwidth ceiling nearly as fast…

Pipelined Arithmetic Architecture Example (MIPS)
Notice that there is only

one divider for both

floating point and integer,

and it is not pipelined. This

is likely because CPU

division is considered

uncommon and very

area-expensive.

Pipelined hardware

division algorithms do

exist, typically based on

Taylor Series Expansion.source : http://meseec.ce.rit.edu/eecc551-fall2002/551-9-12-2002.pdf

Operational Optimizations
FP16 Support

- Each FP32 unit is capable of a single FP32 operation or 2 FP16 operations

- ½ sized data -> half space & bandwidth required (or 2x bandwidth)

- Useful for machine learning applications, truncate precision to avoid overfitting

Expanded Hardware-supported Atomics

- Maxwell implemented hardware 32 bit int atomicAdd() in shared memory

- Otherwise, synchronization only possible via locking and compare-and-swap instructions

- Pascal implements 32 & 64 bit int and float atomicAdd.

More Operational Optimizations
Caching

- 64 KB shared L1 & Texture Cache per SM

- Allocated depending on workload

- 4096 KB dedicated L2 cache shared across GPU

2x GPUDirect RDMA Bandwidth

- Available since Kepler

- More Multipurpose than NVLink

- Access GPU memory directly from other PCIe devices. Eliminate extraneous memory copies..

16nm FinFET Process

FinFET Transistors
Why is smaller better?

What was wrong with traditional MOSFET?

FinFET Transistors

Bigger isn’t always better
Smaller Transistors means more per transistors per unit area

Less power required to activate transistors

- Better performance for same energy cost

- Useful for modern GPUs

- Same performance for lower energy cost

- Useful for modern CPUs, MOBILE

- Most likely a balance between the two

- Vs Maxell, ~ 2x transistors count, 20% energy boost

Why ditch
MOSFETs?

Current issue- Leakage current

- Low Source/Drain and Gate/Source voltage

differentials- varies exponentially

- Quantum Effect- Electrons forget which side of

the channel they are on

Future Issue- fabrication

- Smallest features are already same width as the

wavelength used in Photolithography

- Current estimates say Moore’s Law really expires

in 2030 (for real, this time).

Source: greenoptimistic.com

MOSFET vs FinFET
MOSFET

- Planar channel

controlled by voltage

from one side

FinFET

- Well-defined, wire like

channel shut off from 3

sides

- “Pinch closed”

Source:
http://www.nature.com/nature/journal/v512/n7513/fig_tab/nature
13570_F4.html

NVIDIA NVLink

High Speed Interconnect
Multiple-GPU systems becoming

increasingly prevalent

Interconnect GPUs while reducing load on

PCIe bus

Execute directly on memory attached to

another GPU

Uses NVIDIA High-Speed Signaling

(NVHS)
Hybrid Mesh Cube Topology

DGX-1

Source: NVIDIA

NVIDIA High-Speed Signaling (NVHS)
- Differential Pair @ 20 Gbps

- Eight differential pairs form uni-directional Sub-Link

- Two Sub-Links - one in each direction- form Link

- Link supports up to 20 GB/s in each direction for total 40 GB/s bidirectional bandwidth

- Multiple simultaneous Links called Gangs

- Flagship Pascal Tesla P100 supports Gangs of 4 per GPU for max bidirectional bandwidth of 160

GB/s

- NRZ Signalling

- Non return to zero: 0s and 1s represented by DC Voltages

- As opposed to Return to Zero (RZ) where between each bit voltage returns to “neutral” zero

- Variable length packets from 1 to 18 Filts

- Filts: 128 bit data words

NVHS Controller Layers
- Physical Layer (PL)

- Interfaces with the physical physical layer

- Responsible for deskew, framing,

scrambling/descrambling, polarity inversion

and lane reversal

- Data Link Layer (DL)

- Responsible for reliable transmission

- 25 bit CRC, replay buffering, ACK

- Also handles link bringup and maintenance

- Transaction Layer (TL)

- Responsible for synchronization, link flow

control, virtual channels, and link aggregation

Source: NVIDIA

PCIe Relief
- GPUs can share memory with remote nodes through DMA

- NVIDIA claims 5x bandwidth (160 GB/s over 32 GB/s) and ⅓ energy cost of PCIe

3.0

- Free up PCIe for system memory and NIC access

- High demand in general for PCIe lanes...

- In IBM POWER8 CPUs, NVLink can circumvent PCIe entirely

- Partnership with IBM for Oakridge and Livermore National Laboratories exascale supercomputing

projects

NVLink in P100
- Two 400 pin connectors: one for NVLink, one for everything else

- NVLink Controller communicates with GPU through High-Speed Hub (HSHUB)

- HSHUB connected to GPU wide crossbar, High Speed Copy Engines (HSCE), and other elements

http://www.mathcs.emory.edu/~cheung/Courses
/355/Syllabus.linux/90-parallel/CrossBar.htmlSource: NVIDIA

CoWoS with HBM2

CoWoS with HBM2
- Chip-on-wafer-on-substrate with High Bandwidth Memory 2

- Consists of one or more vertical stacks of memory dies

- Linked with through-silicon vias and microbumps

- Contrast with GDDR5- discrete memory chips surrounding the GPU

- 3x greater bandwidth compared to GDDR5

Source: NVIDIA

Native ECC Support
- HBM2 supports native Error Correcting Code support.

- ECC detects and corrects memory bit corruption before error propagates to

system

- ECC was a implemented in older GDDR5 based systems as a toggleable feature-

but at huge performance costs

- 5%-10% storage space overhead

- 10%-15% memory bandwidth overhead

- Tesla P100 protected by Single Error Correct Double Error Detect (SECDED)

ECC

Error Correcting Codes
Generally, memory corruptions are assumed to be independent of one-another, so

multiple cospatial corruptions are considered very very rare. Thus, single correction is

considered sufficient but multiple detection is still important.

Triple Modular Redundancy: Store three copies of each bit, majority vote

- Space-expensive

- Very fast (no computation required!)

Hamming Codes: Clever, limited redundancy based on parity

- Extended Hamming Codes are single error correcting, double error detecting

- Sound familiar?

- Any given bit is included in a unique set of parity bits, erroneous bits are sum of indicating indices

Extended Unified Memory
and Compute Preemption

Unified Memory Predecessors
- Single addressing scheme for both GPU and host memory

- Fermi (2009) - Unified GPU address space

- GPUs only, simpler compilation via single load/store insn for all GPUs, C pointers

- CUDA 4 (2011) - UVA: Contiguous virtual memory address space for CPU +

GPUS

- Pinned CPU memory addressable from GPU over PCIe - no memcpy required

- This tends to be slow…

- CUDA 6 (2014) - Managed Memory

- Pool of data accessible to CPU and GPU with single pointer.

- Looks like GPU memory to GPU and CPU memory to CPU

- CUDA system software automatically migrate data between CPU and GPU

- Required synchronization before kernel launches and max managed memory limited to GPU

memory size

Pascal Unified Memory
- 49 bit virtual addressing

- Covers 48 bits of CPU memory + theoretical 48 bits of GPU memory

- Managed memory no longer limited to GPU memory capacity

- Memory page faulting - i.e. CPU style memory management

- Because how else do you implement virtual addressing > physical address space?

- Don’t need to synchronize memory with GPU before kernel calls

- Non resident memory page faults, swapped in OR mapped over PCIe / NVLink

- Global data coherency guaranteed

- Still need to take proper precautions to avoid race conditions

- Memory allocated with default OS allocator accessible from both GPU and CPU

Pascal Unified Memory
- Simpler programming experience, lower barrier to entry

- Focus on parallel implementation, not memory management

- Developer device/host memory management is an optimization

- Managed memory is sometimes optimal

- Structure of data more manageable

- Data structures and C++ classes, nested structures automatically copied to GPU

- Operate on larger than memory datasets, let system swap in as necessary

- Data always local

- Always access from HBM2 rather than going to system memory

- Doesn’t help if continuously swapping…

- CUDA 8 contains explicit prefetch instruction cudaMemPrefetchAsync()

NUMA
Question: If GPU supports paging, where does distributed memory live at any given

time?

Answer: Follow Non-Uniform Memory Access (NUMA) Paradigm

- Likely the basis for NVIDIA distributed memory model

- Idea: improve system performance by bringing memory nearer to the cores

- Memory is classified into Nodes, have affinity for best performance device

- NUMA Placement: Process of assigning memory from NUMA Nodes

- Affects the performance, not the correctness

- Supported in many Unix-style OS

NUMA Coherency
- IPC between cache controllers

- Leads to poor performance when accesses to same memory address on different controllers

- Cache miss might:

- Require going to main memory

- Request valued from multiple caches, get bombarded with responses

- Scalable Coherent Interface (SCI)

- Maintain list of nodes sharing cache line in associated cache with list status

- MESIF Protocol

- Extension of MESI (Modified, Exclusive, Shared, Invalid) protocol

- Cache lines are designated one of these states

- Reads/writes influenced by state

- MESIF adds Forward state

- Special Shared State

- Designated responder to cache requests

Compute Preemption
- NVIDIA’s attempt to respond to AMD Async Compute

- DX12 benchmarking showed AMD Fiji best, Intel Skylake ok, and NVIDIA Maxwell dead last

- Poor performance apparently due to poor resource sharing on NVIDIA GPU

Compute Preemption
- Allows system to pre-empt ill behaved or

long running tasks that monopolize the

system

- Previously, careful coding for resource sharing

required to execute display + compute jobs

simultaneously

- Instruction Level Preemption rather than

block level preemption

- Previously, all threads required to finish before

context switch allowed

- Breakpoints prevented preemption…

- Allows robust & lightweight debugging,

less/no compile time instrumentation

Finer grain control also used to

implement dynamic load balancing.

(some fanbois object)

Source: NVIDIA

Quick
GTX1080
Roundup

Simultaneous Multi Projection
Engine can reproject geometry from 16

viewports, each with arbitrary angle, tilt,

rotation or viewpoint.

Use cases:

- Single Pass Stereo - cheaply render 2 eyes

instead of running each eye through entire

pipeline

- Lens Matched Shading - approximate lens

shape and produce distortion

Source: NVIDIA

Misc. GTX 1080 Features
Enhanced SLI

- Faster, new bridging modes

Fast Sync - alternative to V-sync, high latency way of preventing tearing

- Traditional: game engine generates frames sent to DX

- Solution: decouple render pipeline from display hardware. Frames stored in frame

buffer, GPU chooses which to scan to display

HEVC Encode / Decode Hardware

- 4k/5k video streaming

Works Cited
Rabaey, Digital Integrated Circuits, Second Edition

Patterson and Hennessy, Computer Organization and Design 4th Edition

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.

pdf

http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GT

X_1080_Whitepaper_FINAL.pdf

https://devblogs.nvidia.com/parallelforall/inside-pascal/

https://pdfs.semanticscholar.org/21dd/e7a53fe6c26fd99cbba26ee5dde0938672c0.pdf

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://pdfs.semanticscholar.org/21dd/e7a53fe6c26fd99cbba26ee5dde0938672c0.pdf
https://pdfs.semanticscholar.org/21dd/e7a53fe6c26fd99cbba26ee5dde0938672c0.pdf

Works Cited
http://meseec.ce.rit.edu/eecc551-fall2002/551-9-12-2002.pdf

http://queue.acm.org/detail.cfm?id=2513149

https://en.wikipedia.org/wiki/Non-uniform_memory_access

https://en.wikipedia.org/wiki/Scalable_Coherent_Interface

https://en.wikipedia.org/wiki/MESIF_protocol

http://www.rfwireless-world.com/Tutorials/floating-point-tutorial.html

http://www.slideshare.net/zbhavyai/implementation-of-32-bit-alu-using-vhdl?next_slide

show=1

http://meseec.ce.rit.edu/eecc551-fall2002/551-9-12-2002.pdf
http://meseec.ce.rit.edu/eecc551-fall2002/551-9-12-2002.pdf
http://queue.acm.org/detail.cfm?id=2513149
http://queue.acm.org/detail.cfm?id=2513149
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://en.wikipedia.org/wiki/Scalable_Coherent_Interface
https://en.wikipedia.org/wiki/Scalable_Coherent_Interface
https://en.wikipedia.org/wiki/MESIF_protocol
https://en.wikipedia.org/wiki/MESIF_protocol
http://www.rfwireless-world.com/Tutorials/floating-point-tutorial.html
http://www.rfwireless-world.com/Tutorials/floating-point-tutorial.html
http://www.slideshare.net/zbhavyai/implementation-of-32-bit-alu-using-vhdl?next_slideshow=1
http://www.slideshare.net/zbhavyai/implementation-of-32-bit-alu-using-vhdl?next_slideshow=1
http://www.slideshare.net/zbhavyai/implementation-of-32-bit-alu-using-vhdl?next_slideshow=1

Works Cited
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline

https://en.wikipedia.org/wiki/Triple_modular_redundancy

https://en.wikipedia.org/wiki/Hamming_code

http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders

-edition-review/11

https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://developer.nvidia.com/content/life-triangle-nvidias-logical-pipeline
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/Triple_modular_redundancy
https://en.wikipedia.org/wiki/Hamming_code
https://en.wikipedia.org/wiki/Hamming_code
http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/11
http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/11
http://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/11

Thanks for
Listening!

